

Product Name:		HV PACK Lithium-iron Energy Storage Battery	
Model	No	HV PACK - 5/6/7/8/9/10/11/12	
Model	NO	TV PACK - 3/ 0 / 7 / 8 / 9 / 10 / 11 / 12	
Version	No:	V1 1	

Content

1.	State	ment of Law	1
2.	Safet	y Guidelines	1
	2.1.	Main precautions	1
	2.2.	Symbols	2
	2.3.	Abbreviations Used in this Manual.	2
	2.4.	Note Before Installation	2
	2.5.	During Operation	3
3.	Syste	m Application Introduction	3
	3.1.	Product Properties	3
	3.2.	PV Self-use Surplus Power to Grid	4
	3.3.	Peak Shaving and Valley Filling	4
	3.4.	Standby Power Supply	4
4.	Produ	uct Specification	5
	4.1.	System Performance Parameter	5
	4.2.	Inverter Connection Cables	6
	4.3.	System Drawing	7
	4.4.	Battery Controller Box	8
	4.5.	Battery Pack	9
	4.6.	Wi-Fi Antenna	10
	4.7.	Display rendering	12
5.	Syste	m Installation Instructions	
	5.1.	Installation location	13
	5.2.	Installation Tools	14
	5.3.	Unpacking inspection	15
	5.4.	Packing List	15
	5.5.	Handling and Placement	15
	5.6.	Battery system self-test	16
	5.7.	Shut down	16
	5.8.	Connecting inverter	16
	5.9.	Storage Recommendations	17
6.	Inver	ter Connection Diagram	17
	6.1.	With Sunsynk	17
	6.2.	With Solis	18
	6.3.	With Atess	18
7.	Appe	ndix1	
8.		ndix2	
		Abnormal Situation Addressing	
	8.2.	Product Responsibilities and Consulting	

1. Statement of Law

Copyright of this document belongs to BSLBATT(Huizhou) Co., Ltd.

No part of this documentation maybe excerpted, reproduced, translated, annotated, or duplicated in any form or by any means without the prior written authorization of BSLBATT(Huizhou) Co., Ltd. All Rights Reserved.

This product complies with the design requirements of environmental protection and personal safety. The storage, use and disposal of the products shall be carried out in accordance with the product manual, relevant contract or relevant laws and regulations.

Customer can check the related information on the website of BSLBATT(Huizhou) Co., Ltd. when the product or technology is updated.

Web URL: https://www.bsl-battery.com/

Please note that the product can be modified without prior notification.

2. Safety Guidelines

2.1. Main precautions

- ◆ It is very important and necessary to read the user manual carefully before installing or using the battery. Failure to follow any of the instructions or warnings in this document can result in electrical shock, serious injury, or may damage the battery and the whole system.
- ◆ The battery needs to be recharged within 12 hours after fully discharging.
- Do not expose cable outside.
- ◆ All battery terminals must be disconnected before maintenance.
- Do not use cleaning solvents to clean the battery.
- Do not expose the battery to flammable or harsh chemicals or vapors.
- ◆ Any foreign object is prohibited to be inserted into any part of the battery.
- Any warranty claims are excluded for direct or indirect damage due to items above.
- Only qualified person can perform the wiring of the battery strings.
- ◆ If the battery is stored for a prolonged time, it is requirement that they are charged every three months, and the SOC should be no less than 50%.

2.2. Symbols

Symbol	Description
4	Caution, risk of electric shock
	Heavy enough may cause severe injure
Keep the battery away from open flame or ignition sour	
(Keep the battery away from children
<u> </u>	Do not dispose of the product with household waste
	Recycling
	Read this manual before installation and operation

2.3. Abbreviations Used in this Manual.

Abbreviation	Designation		
BSL	BSLBATT(Huizhou) Co., Ltd		
QC	Quality Control		
BMS	Battery Management System		
PCS	Power Conversion System		
SOC	State of Charge		
UPS	Uninterruptible Power Supply		
BESS	Battery Energy Storage System		
EMS	Energy Management System		
BCU	Battery control unit		
BMU	Battery Management Unit		
BAU Battery array unit			

2.4. Note Before Installation

- When receiving, please check the system and packing list first, if the pack is damaged or spare parts are missing, please contact the dealer.
- ◆ Before installation, be sure to cut off the grid power and make sure the battery is in the turned-off mode.
- Wiring must be correct, do not mix-connect the positive and negative cables, and ensure no short circuit with the external device.
- ◆ It is prohibited to connect the battery to AC power directly without an AC Breaker.
- Please ensure the electrical parameters of AC power and Load are compatible to system.
- Keep the system away from fire or water.

Battery is for indoor installation only.

2.5. During Operation

- ◆ If the system needs to be moved or repaired, the power must be cut off first and the battery is completely shut down.
- It is prohibited to connect the system with different type of battery.
- ◆ It is prohibited to put the batteries working with faulty or incompatible inverter.
- ◆ In case of fire, only dry powder fire extinguisher can be used, liquid fire extinguishers are prohibited.
- ◆ Please do not open, repair, or disassemble the system except staffs from BSLBATT or authorized by BSLBATT. We do not undertake any consequences or related responsibility due to violation of safety operation or violating of design, production, and equipment safety standards.

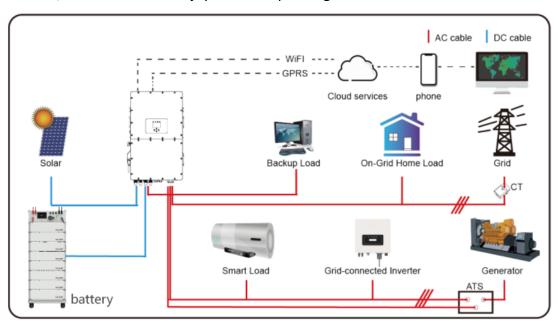
3. System Application Introduction

This product is a household energy storage battery pack. The system is matched with a 38.88/46.66/54.43/62.21/69.98/77.76kwh lithium iron phosphate battery pack. This product can be used in conjunction with electricity, so that electricity consumption can be adjusted. This product supports a variety of application modes, such as PV self-use surplus power to grid, peak shaving and valley filling, standby power supply, etc. The specific operation logic is as follows.

3.1. Product Properties

- ◆ Anode material is made from LiFePO4 with safety performance and long cycle life.
- ◆ Battery management system (BMS)has protection functions including over-discharge, over-charge, over-current and high/low temperature.
- ◆ The system can automatically manage charge and discharge state and balance current and voltage of each cell.
- ◆ Flexible configuration, multiple battery modules can be in serial for expanding voltage and Capacity.
- ◆ Triple protection mechanism, including relays, fuse, and circuit breaker, preventing battery from short circuits or other serious malfunctions.
- Standard intelligent gateway for remote battery monitoring and diagnosis.
- ◆ Good ventilation and cooling capacity, the battery pack will not generate heat accumulation.
- lack Working temperature range is from 0 to 50 $^{\circ}$ C, with excellent discharge performance and cycle life.
- Small size and light weight, standard module is comfortable for installation and maintenance.

3.2. PV Self-use Surplus Power to Grid


Under the condition of good illumination in the daytime, the DC power from PV panel is changed into AC through inverter to supply power for household load. If the household load cannot run out of photovoltaic power, the remaining power will be stored in the battery. If the battery is full, photovoltaic power will be supplied to the grid. In the night or rainy days, photovoltaic cannot generate electricity. The battery supplies power to the home load through an inverter. If the battery SOC is low, the household load will take power from the grid.

3.3. Peak Shaving and Valley Filling

In some countries and regions where peak valley time of use price is implemented, if the difference between peak price and low price is large, the application mode of peak shaving and valley filling can be adopted in energy storage system. In the low electricity price period, the energy storage system is charged; in the peak period of electricity price, the energy storage system supplies power to the household load. It can avoid users using too much power grid when the electricity price is high and save energy expenditure.

3.4. Standby Power Supply

In some extreme weather (such as tornadoes, typhoons, hail), or substation operation failure, power supply will be interrupted. If the energy storage system is installed, the user can still enjoy sufficient power guarantee under this situation.

System Connection Diagram

4. Product Specification

HV-PACK is a high voltage battery storage system based on lithium iron phosphate battery, which is one of the new energy storage products developed and produced by BSLBATT. It can be used to provide reliable power for various types of equipment and systems. HV-PACK enables multiple strings parallel operation feature, which provides tremendous flexibility in system design and configuration. HV-PACK is especially suitable for those application scenes which require flexible capacity extension, high power output, limited installation space, restricted load-bearing and long cycle life.

4.1. System Performance Parameter

No	General Parameter	HV PACK 5	HV PACK 6	HV PACK 7	
1	Rated Voltage	288.0V	345.6V	403.2V	
2	Rated Capacity	135Ah	135Ah	135Ah	
3	Cell Brand (LFP-3.2V)	REPT135AH	REPT135AH	REPT135AH	
4	System configuration	90S1P	108S1P	126S1P	
5	Battery single box number	5 pack+1 control box	6 pack+1 control box	7 pack+1 control box	
6	Rated power	38.88kWh	46.66kWh	54.43kWh	
7	Charge Upper Voltage	319.5V	383.4V	447.3V	
8	Discharge Lower Voltage	256.5V	307.8V	359.1V	
9	Recommended Current	68A	68A	68A	
10	Maximum Charging Current	135A	135A	135A	
11	Maximum Discharging Current	135A	135A	135A	
12	Dimension (W*D*H, mm)	620*726*1110	620*726*1260	620*726*1410	
13	Communication protocol	CANBUS (Baud rate @500Kb/s or @250Kb/s)/Modbus RTU(@9600b/s)			
14	Host software protocol	C	ANBUS (Baud rate @250Kb	o/s)	
15	0 T		Charge:0~55℃		
16	Operation Temperature Range		Discharge: -20~55 ℃		
17	Cycle Life(25℃)	6000@80%SOH			
18	Protection level	IP20			
19	Storage Temperature	-10℃~40℃			
20	Storage Humidity	10%RH ~90%RH			
21	Internal Impedance	≤1Ω			
	Note: Parameters can be adjusted according to customer requirements				

HV-PACK User Manual

No	General Parameter	HV PACK 8	HV PACK 9	HV PACK 10		
1	Rated Voltage	460.8V	518.4V	576.0V		
2	Rated Capacity	135AH	135AH	135AH		
3	Cell Brand (LFP-3.2V)	REPT135AH	REPT135AH	REPT135AH		
4	System configuration	144S1P	162S1P	180S1P		
5	System composition	8pack+1 control box	9 pack+1 control box	10 pack+1 control box		
6	Rated power	62.21kWh	69.98kWh	77.76kWh		
7	Charge Upper Voltage	511.2V	575.1V	639.0V		
8	Discharge Lower Voltage	410.4V	461.7V	513.0V		
9	Recommended Current	68A	68A	68A		
10	Maximum Charging Current	135A	135A	135A		
11	Maximum Discharging Current	135A	135A	135A		
12	Dimension (W*D*H, mm)	620*726*1560	620*726*1710	620*726*1860		
13	Communication protocol	CANBUS (Baud rate @500Kb/s or @250Kb/s)/Modbus RTU(@9600b/s)				
14	Host software protocol	C	ANBUS (Baud rate @250Kb	p/s)		
15	On the Tanana and the Daniel	Charge:0~55 ℃				
16	Operation Temperature Range		Discharge: -20~55℃			
17	Cycle Life(25℃)	6000@80%SOH				
18	Protection level	IP20				
19	Storage Temperature	-10℃~40℃				
20	Storage Humidity	10%RH ~90%RH				
21	Internal Impedance	≤1Ω				
	Note: Parameters can be adjusted according to customer requirements					

4.2. Inverter Connection Cables

We will provide cables according to the actual situation of the customer. But if the customer wants to provide their own cables, they can refer to the following table.

No	Matched Inverter	Wire size	Cable(mm²)	Recommended Quantity
1	Sunsynk	AWG4∼AWG6	13.3~21.15	2 positive cables+2 negative cables
2	ATESS	AWG2	33.62	1 positive cable+1 negative cable
3	Others	AWG2	33.62	1 positive cable+1 negative cable

4.3. System Drawing

4.4. Battery Controller Box

Item	Name	Definition		
1	External Positive socket	Connect battery system with Inverter positive terminal		
2	External Negative socket	Connect battery system with Inverter negative terminal		
3	Internal Positive socket	Connect battery controller with battery pack positive terminal		
4	Internal Negative socket	Connect battery controller with battery pack negative terminal		
5	PCS communication port	Communicate battery controller with inverter		
6	Debugging port	Communicate to computer for monitoring and upgrading battery		
7	Parallel communication port Address confirmation for parallel connection with anoth HV-PACK			
8	Internal communication port	Communicate battery controller with battery pack		
9	DC circuit breaker	Used to control the on/off of the high-voltage circuit of the battery		
10	Power On Button	Used to control the on/off of the low voltage circuit of the battery		
11	Screen	Used to monitor battery data such as voltage, current, and temperature		

Caution: When the DC breaker is tripped off because of over current or short circuit, must wait after 30min to turn on it again, otherwise may cause the breaker damage.

Power On Button: Generally when it is at ON state, you can't turn off it during normal running condition.

Danger: Ensure Power On Switch is turned on before waking up the battery. Otherwise it will affect automatic checking process and cause danger.

Danger: DO NOT turn off the "Power On Switch" during normal running condition, only in emergency case it could be turned off directly. Otherwise will cause this battery string current surge by another battery strings.

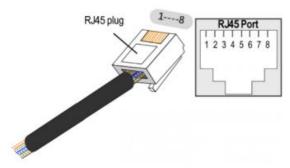
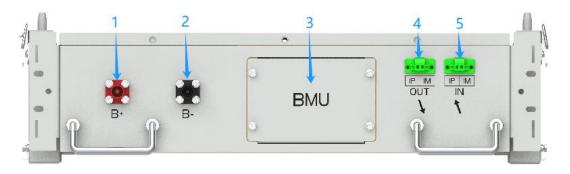
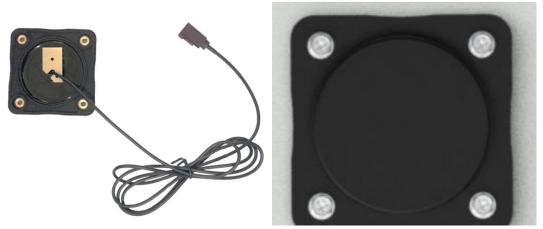
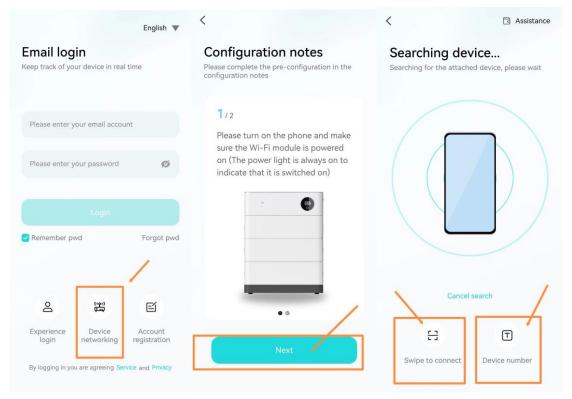



Figure 2. Definition of "PCS"" Debug" port pin

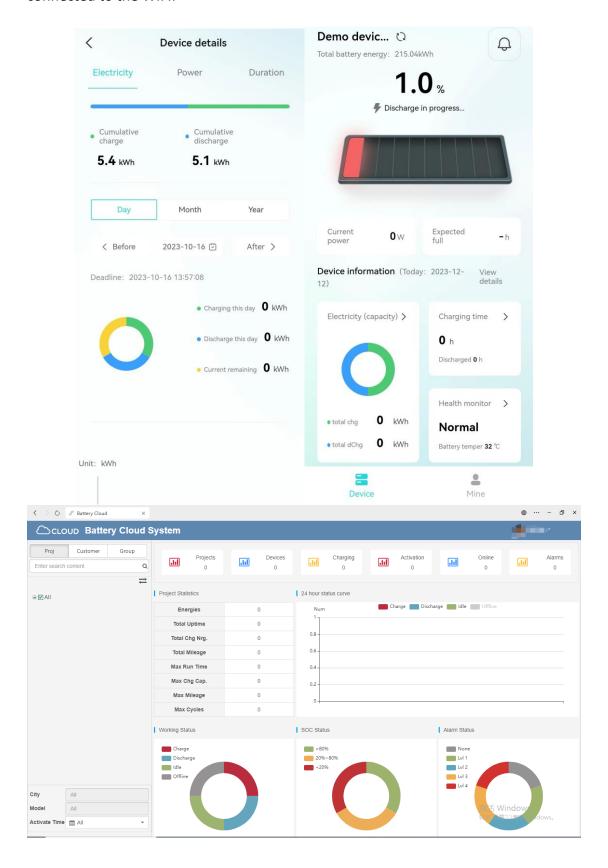

PIN	Color	Definition (PCS)	Definition (Debug)
1	Orange/White	NC	CANH
2	Orange	NC	CANL
3	Green/White	CANG	NC
4	Blue	CANH	NC
5	Blue/White	CANL	NC
6	Green	NC	485G
7	Brown/White	NC	485A
8	Brown	NC	485B

4.5. Battery Pack



Item	Name	Definition		
1	Pack positive socket	Positive terminal of battery pack		
2	Pack negative socket Negative terminal of battery pack			
3	BMU maintenance port	BMU collect and upload cell information such as cell voltage and temperature to BCU in controller box		
4	Internal communication(out) Connected to lower layer battery box			
5	Internal communication(in) Connected to upper layer battery box			

4.6. Wi-Fi Antenna


Before we could check the details of battery through APP or WEB, we shall connect the antenna to WIFI:

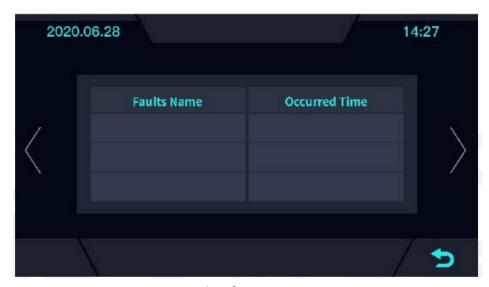
(Tips: if fail to search device by Bluetooth, you can try scanning the code or directly entering the device number, all this information is on the sticker next to the antenna)

HV-PACK User Manual

Battery data can be uploaded to the cloud platform after the antenna successfully connected to the WIFI:

4.7. Display rendering

Battery Management System (BMS) information can be directly read and indicated by display.


Engineering mode

Individual voltage

Individual temperature

Fault information UI

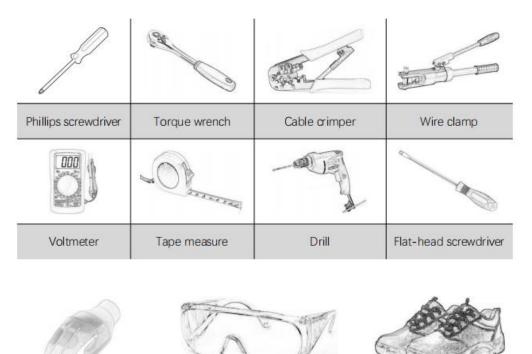
5. System Installation Instructions

5.1. Installation location

Make sure that the installation location meets the following conditions:

- ◆ The building is designed to withstand earthquakes.
- ◆ Far away from the sea to avoid salt water and humidity.
- ◆ The floor is flat.
- No flammable or explosive materials nearby.
- ◆ Optimal ambient temperature is between 25 °C and 55°C.
- ◆ Temperature and humidity stay at a constant level.
- Minimal dust and dirt in the area.
- ◆ No corrosive gases present, including ammonia and acid vapor.

The system could be installed indoor. If the ambient temperature is outside the operating range, battery will protect itself by shutting down. The system optimal operate temperature is 0°C to 55°C. Before installation and system power on, the dust and iron scurf must be removed to keep a clean environment. And the environment must have certain anti-dust ability. Frequent exposure to severe operating condition would exacerbate the performance and lifetime of the system.


NOTICE

Make sure that the cross-sectional area of charging cables is 25 to 35 mm²

A breaker between BSL battery and inverter was recommended to install and the breakers min. current should meet twice the rated current of the system or following with local regulations.

5.2. Installation Tools

To install the battery pack, those following tools are probably required:

5.3. Unpacking inspection

- When the equipment arrives at the installation site, loading and unloading should be performed according to the rules and regulations, to prevent from being exposed under sunlight. Battery should not be installed in direct sunlight.
- ◆ Before unpacking, the total number of packages shall be indicated according to the shipping list attached to each package, and the case shall be checked for good condition.
- In the process of unpacking, handle with care and protect the surface coating of the object.
- Open the package, the installation personnel should read the technical documents, verify the list, according to the configuration table and packing list, ensure objects are complete and intact, if the internal packing is damaged, should be examined and recorded in detail.

5.4. Packing List

5.5. Handling and Placement

The battery pile's power terminals have high DC voltage. It must be installed in a restricted access area.

HV-PACK User Manual

- ◆ HV-PACK is a high voltage DC system, operated by qualified and authorized personnel only.
- Single battery pack is quite heavy. The battery pack must be handled by more than 2 personnel if there're no handling tools.
- ◆ HV-PACK system working temperature range: -20°C~55°C; Optimum temperature: 18°C~28°C. DO NOT expose the battery system to direct sun light. It is suggested to build sunshade equipment. In cold area a heating system is required.
- ◆ HV-PACK system must not be immersed in water. The battery base cannot be exposed to rain or other water sources. As a suggestion, the base's height shall be >300mm above the ground.
- ◆ The support surface should have sufficient load capacity to support the weight of whole battery system(>2T).
- ◆ HV-PACK system must be installed on a fixed and flat support surface.

5.6. Battery system self-test

Step1: Check if all battery wiring is correct.

Step2: Turn on the DC breaker.

Step3: Press the circular metal switch to "on" status.

Step4: Check if any alarm information is displayed on the screen, if so, please

contact your installer or BSLATT.

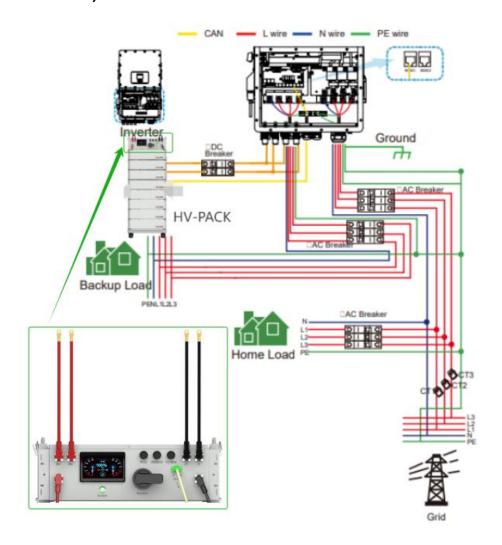
5.7. Shut down

Step1: Press the circular metal switch to "off" status.

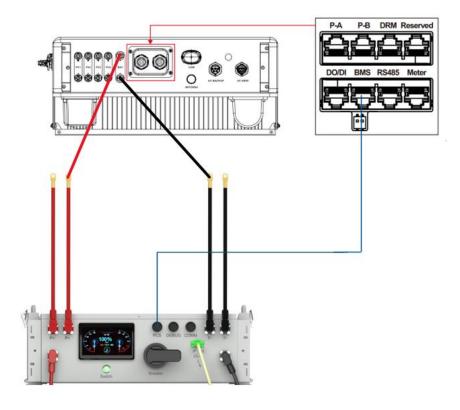
Step2: Turn off the DC breaker.

5.8. Connecting inverter

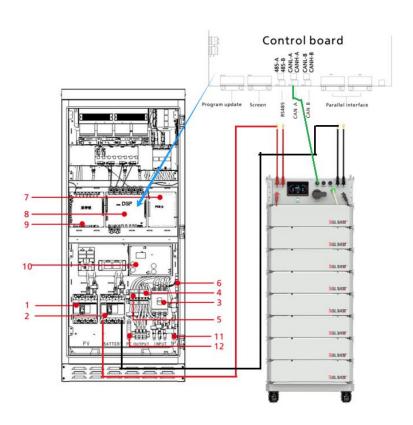
- ◆ An external DC Breaker that operates both positive and negative conductors simultaneously between the battery controller and inverter on the power cable is recommended. After waking up the battery controller and ensure that the battery controller is pre-charged, you can turn on it.
- Please confirm that the battery system is in the off state before connecting. It maybe causes electric shock to personnel and damage to the inverter if connect the battery directly without power off.
- When connecting to the inverter's battery port, ensure that the positive and negative cables are not reversed.


5.9. Storage Recommendations

- ◆ For long-term storage (more than 3 months), the battery cells should be stored in the environment: temperature range of 5~45 °C, relative humidity<65% and contains non-corrosive gas.
- ◆ The battery module should arrange in range of 5~45 °C, dry, clean, and well-ventilated environment. The battery should be charged to 50~55% SOC before storage.
- ◆ It is recommended to active the battery system (discharge and charge) every 3 months, and the longest duration of storage without charge and discharge cannot exceed 6 months.

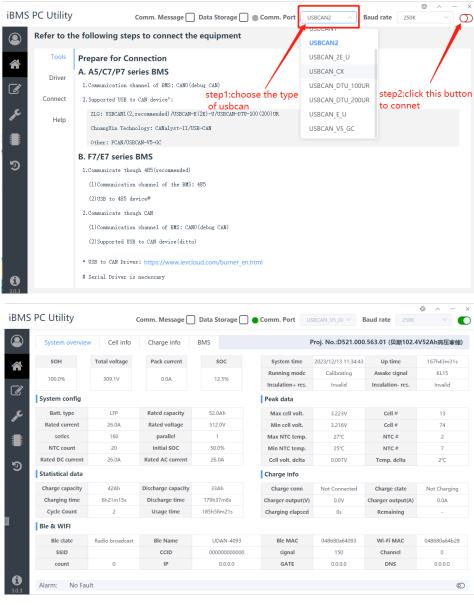

Caution: The cycle life of the battery will have relative heavily reduction if not follow the above instructions to store the battery for a long term.

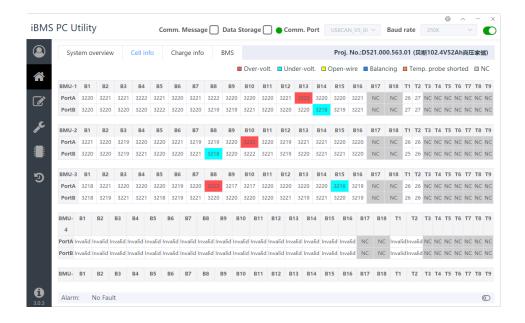
6. Inverter Connection Diagram


6.1. With Sunsynk

6.2. With Solis

6.3. With Atess


7. Appendix1


When the equipment manufacturer confirms that it is necessary for customer to set the battery parameter, it can authorize to provide the customer with the host software and operating instructions.

CAN Serial port communication device

Host soft operation:

8. Appendix2

8.1. Abnormal Situation Addressing

◆ What if the system does not work properly after power on?

A: The most direct way is to check the LCD Displaying of the inverter, through the LCD Displaying to find the fault phenomenon, causes can be roughly analyzed from the LCD Displaying interface prompt alarm, protection, fault, and other information, it can also provide necessary reference for further testing.

- What are the Battery Failures including?
- 1) Sampling failure: analog front-end and main control chip communication failure. When the fault occurs, the charge and discharge function is turned off, and the fault alarm can be automatically cleared after the fault is cleared.
- 2) Temperature NTC failure mainly detects whether the temperature NTC is short-circuited or disconnected. When the fault occurs, the charge and discharge function is turned off, and the fault alarm can be automatically cleared after the fault is cleared.
- 3) Cell failure: the voltage difference of the cell exceeds 1V, or the difference between the total voltage detection voltage and the sum of single cell voltage is more than 5V, or the minimum voltage is less than 0.5V. The voltage sampling line disconnect also reports the same fault. When the fault is cleared, the fault alarm can be automatically cleared.

8.2. Product Responsibilities and Consulting

- ◆ We will not be liable for the accidents resulting from operation breaking this specification and user manual.
- We will not send separate notice, provided that the contents of this specification are changed due to improvement of product quality or technological upgrading, if you want to understand the latest information of this product, please contact us.
- ◆ The shelf life of this product is within 60 months after it is delivered, we will maintain the product, which is in the warranty period for free of charge, if it has any product quality problems within the specified operation range, we may replace the relevant parts if we fail to maintain it.
- ◆ To achieve the purpose of sustainable use without performance reduction, our after-sales service personnel will propose the specific maintenance and troubleshooting methods in case of any questions, please contact us.

WARRANTY CARD				
Product Name		Model Number		
BATCH NO.		Shiping Date		
The Buyer		Phone		
Address				

If a device becomes defective during the agreed warranty period, please report the defective device situation to the original manufacturer with this warranty card. Supplier or end users required to send the warranty claim form to the original manufacturer or authorized service partner with all the necessary information. Customers must present this warranty card, battery purchasing invoice, extension warranty letter if applicable, and other related materials as well if required. It is the responsibility of the warranty holder to substantiate the warranty claim and show that the conditions are met. Please note the original manufacturer reserve the ultimate explanation right on this warranty card.

THANK YOU FOR CHOOSING

LET'S DEVELOP TRUST AND BUSINESS

Since 2003, BSLBATT provides electric energy more efficiently and reliably as best solution. Powerwall charges by day and powers at night for residential solar system with compact, affordable, and easy installation features.

BSLBATT Battery - Solar

inquiry@bsl-battery.com +86-752 2819 469

Building 1, Zhongkai Innovation Base of Lihe Science and Technology, Huizhou, Huizhou City, Guangdong Province, China